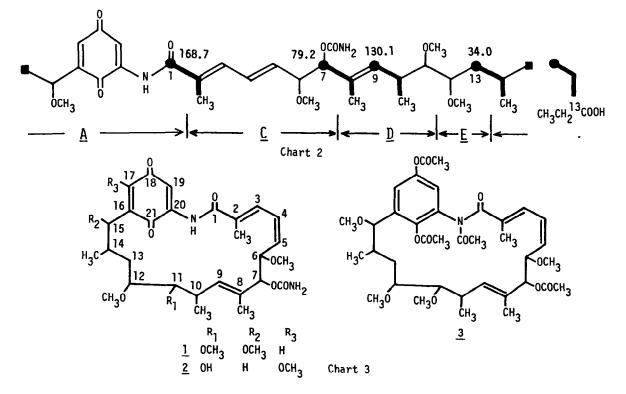

Tetrahedron Letters No. 44, pp 4323 - 4326. © Pergamon Press Ltd. 1979. Printed in Great Britain.

STRUCTURE OF HERBIMYCIN, A NEW ANSAMYCIN ANTIBIOTIC

S. Ōmura^{*}, A. Nakagawa and N. Sadakane School of Pharmaceutical Sciences, Kitasato University Minato-ku, Tokyo 108, Japan

Herbimycin is a new potent herbicidal antibiotic¹⁾ isolated from the cultured filtrate of <u>Streptomyces</u> (Sm.) <u>hygroscopicus</u> AM-3672. We assign structure <u>1</u> to herbimycin based on ¹H- and ¹³C-nmr spectral analyses and biosynthetic means using ¹³C-labeled precursors.

The molecular formula, $C_{30}H_{d0}N_{2}O_{0}$ for herbimycin (1) was established from the elemental analysis and high-resolution mass (M^+ , m/e 574) in the early report¹). The UV spectrum (MeOH) of <u>1</u> shows characteristic absorption maxima at 270 nm (ε 20090) and 392.5 nm (ε 1650), indicating the presence of benzoquinone nucleus²⁾ as a chromophore. The ¹H- and ¹³C-nmr spectra of <u>1</u> indicate that 1 is structurally similar to geldanamycin (2), ansamycin antibiotic, the structure of which has been determined by Rinehart et al. $^{3)}$ The presence of the following functional groups in <u>1</u> was deduced from the ¹H- and ¹³C-nmr (CDCl₂) and ir (CHCl₂) spectra: $OCONH_2$ [δ 4.87 (broad s), exchange with D_20 , 1730 cm⁻¹], CONH [δ 8.78 (s), exchange with D_20 , 1655 cm⁻¹], four OCH_3 (δ 56.0, 57.6, 58.4 and 59.8), benzoquinone carbonyls (δ 187.7 and 183.9, 1690 cm⁻¹), two sec-methyl protons (& 0.82 and 1.09), two methyl protons (& 1.65 and 2.01) attached to double bond, a methylene carbon (δ 34.0), a conjugated diene protons [δ 6.95 (broad d), 6.48 (t) and 5.84 (q)] and an isolated double bond proton [δ 5.50 (broad d)]. The substitution pattern of benzoquinone nucleus was deduced from the ¹H-nmr spectral evidence; two protons observed at δ 6.60 (t, J=2.7 Hz) and 7.30 (d, J=2.7 Hz) can be assigned to those at $\alpha-$ and $\alpha'-positions of$ the quinone carbonyl⁴⁾ as shown in partial structure <u>A</u>. Further evidence for structure <u>A</u> was obtained from the off-resonance 13 C-nmr spectrum in which the guinone carbonyl carbon at δ 183.9 shows up as a triplet due to the long-range (vicinal) $^{13}C^{-1}H$ coupling ($^{3}J_{CCCH}$ =10.0 Hz) to the two protons at δ 6.60 and 7.30. The functional groups connecting the ansachain moiety to the benzoquinone unit were identified to be >CH-OCH $_3$ [δ 4.50 (broad s)] from the observation that the proton signal at δ 6.60 (t) on the benzoquinone nucleus collapses into a doublet upon


irradiating the methyne proton at δ 4.50, and from the fact that the ¹³C chemical shift values of the nitrogen-substituted carbon (δ 138.2) and the amide carbonyl (δ 168.7) in <u>1</u> (in CDCl₃) are virtually identical with those in <u>2</u> (δ 139.6 and δ 169.1 in DMSO-d₆, respectively).

Additional confirmation for the skeletal structure <u>A</u> is provided by a colorless compound, <u>3</u> $[C_{37}H_{51}NO_{12}, M^+, m/e 701 (701.344; Calcd. for <math>C_{37}H_{51}NO_{12}$ 701.346), v_{C0} 1730 and 1770 cm⁻¹], which was obtained by reductive acetylation of <u>1</u> with Zn dust in acetic anhydride. The UV absorption maximum [λ_{max} 271 nm (ϵ 17000)] in <u>3</u> suggests the presence of the dienamide group. The ¹H-nmr spectrum of <u>3</u> exhibited two aromatic protons (δ 6.98 and 7.22 each as a doublet with J=2.7 Hz) and four acetyl groups at δ 2.28 (two aromatic acetoxyls), δ 2.28 (N-acetyl) and δ 2.07 (acetoxyl derived from the OH group by elimination of a carbamoyl group during acetylation). In addition, the presence of partial structure <u>B</u> in <u>3</u> was strongly suggested by the coupling (J=2.0 Hz) between the protons at δ 4.32 (broad s) and 1.60 (m) which could be assigned to those on the carbons attached to the methoxyl and <u>sec</u>-methyl groups, respectively. Consequently, the <u>sec</u>methyl group should be located adjacent to the methoxyl group in the partial structure <u>A</u> of <u>1</u>.

With regard to the structure of the ansachain moiety in 1, the presence of the following

partial structures <u>C</u> and <u>D</u> were confirmed by proton spin decoupling experiment on <u>1</u>, as indicated in Chart 1. In addition, the validity for the structures of fragments <u>C</u> and <u>D</u> was also supported by the remarkable similarity in the ¹³C chemical shifts of <u>1</u> and <u>2</u>. ¹³C Chemical shift assignments⁵) aided by selective ¹³C-¹H decoupling of <u>1</u> and comparison of the chemical shifts of <u>1</u> with those of <u>2</u> are listed in Table 1. Two possible structures, that is, $-CH(0CH_3)CH_2$ - and $-CH_2CH(0CH_3)$ -, were considered for the remaining fragment <u>E</u> (C₃H₆O) which contains a methoxyl group (δ 3.32). It was difficult to assign unequivocally the structure of fragment <u>E</u> from the ¹H- and ¹³C-nmr spectral data alone. On the other hand, Rinehart et al.⁶) have reported that the ansachain moiety of the antibiotic <u>2</u> is derived biosynthetically from one acetate, two glycerates or glycolates and four propionates. This biosynthetic evidence for <u>2</u> were utilized to the

structural elucidation of <u>1</u> in connection with the structural similarity of <u>2</u> to <u>1</u>. Namely, in order to obtain more definitive evidence for the structure of fragment <u>E</u> and the arrangement of the partial structures <u>A</u>, <u>C</u>, <u>D</u> and <u>E</u> in <u>1</u>, biosynthetic study was carried out using ¹³C-labeled propionate as a precursor. [1-¹³C]Sodium propionate (90% enriched in ¹³C) was fed to the fermentation culture⁷⁾ of <u>Sm</u>. <u>hygroscopicus</u> AM-3672, and ¹³C-labeled herbimycin was isolated from the fermentation broth. The ¹³C-nmr spectrum of ¹³C-labeled herbimycin exhibited a strong

Carbon No.	1	2	Carbon No.	1	2
-NHCO-	168.7 s	169.1 s	11	82.3 d	71.9 d
2	134.5 s	133.2 s	11-0CH2	58.4* q	-
2-CH3	12.4 q	12.2 g	12 3	83.4 d	80.2 d
3 3	128.2 d	128.4 d	12-0CH2	57.6* q	56.5 a
4	125.6 d	125.7 d	13 3	34.0 t	31.0 t
5	136.7 d	137.8 d	14	36.7 d	26.6 d
6	78.3 d	81.6 d	14-CH2	13.6 q	13.0 a
6-0CH3	56.0* q	56.0 q	15 ³	78.7 d	31.7 t
7 °	79.2 d	80.6 d	15-0CH2	59.8* q	-
7-OCONH2	155.9 s	156.0 s	16 3	144.6 s	128.1 s
8 ^	131.6 s	132.6 s	17	132.6 d	156.4 s
8-CH ₂	14.1 q	12.5 q	17-0CH3	-	61.0 g
9 3	130.1 d	131.9 d	18 3	187.7 s	183.6 s
10	34.1 d	32.1 d	19	112.9 d	110.9 d
10-сн ₃	16.3 q	23.3 q	20	138.2 s	139.6 s
	i i	•	21	183.9 s	183.1 s

Table 1. Comparison of the 13C-nmr spectra of herbimycin (<u>1</u>) and geldanamycin (<u>2</u>)

The chemical shifts are $\delta_{\rm C}$ -values in ppm from internal TMS in CDCl₃ for <u>1</u> and DMSO-d₆ for 2. Multiplicities in the off-resonance decoupling spectrum, s; singlet, d; doublet, \dot{t} ; triplet, q; quartet. Assignment denoted with * may be interchanged.

enrichment in four carbon signals at δ 168.7 (C-1), 79.2 (C-7), 130.1 (C-9) and 34.0 (C-13).

Since the enrichment pattern for these carbons, which were derived from carboxyl carbon of a propionate, gave the result concordant with biosynthetic pattern of $\underline{2}$, the validity of structure <u>E</u> and the location of the fragments C, D and E in benzoquinone moiety A was established as shown in Chart $\underline{2}$. Thus, taking into consideration the nmr spectral data, biosynthetic evidence and comparison of those with $\underline{2}$, it was concluded that structure $\underline{1}$ would be the most suitable for herbimycin.

References and Footnotes

- 1) S. Õmura, Y. Iwai, Y. Takahashi, N. Sadakane, A. Nakagawa, H. Õiwa, Y. Hasegawa and T. Ikai, J. Antibiotics, 32, 255 (1979).
- 2) S. Natori, H. Nishikawa and H. Ogawa, Chem. Pharm. Bull., 12, 236 (1964).
- 3) K. Sasaki, K. L. Rinehart, Jr., G. Slomp, M. F. Grostic and E. C. Olson, <u>J. Am. Chem. Soc.</u>, 92, 7591 (1970).
 4) The long range 13C-1H and ¹H-¹H coupling constant values for heteroaromatic molecule are cited from the following reports: a) G. Govil, <u>J. Chem. Soc</u>. (A), 1416 (1967). b) G. Govil, ibid., 1420 (1967).
- 5) Detailed argument regarding the assignment of 13 C chemical shift in 1 will be presented in full paper.
- A. Haber, R. D. Johnson, K. L. Rinehart, Jr., J. Am. Chem. Soc., 99, 3541 (1977).
 7) The fermentation medium employed for preparation of ¹³C-labeled herbimycin consists of the following composition: 2.0% glucose, 1.0% soybean meal, 0.4% KCl, 0.25% yeast extract, 0.1% meat extract, 0.5% (NH₄)₂SO₄, 0.02% K₂HPO₄, and 0.3% CaCO₃ (pH 7.2 before sterilization). After cultivating for 24 hr, 0.2% [1-¹³C]sodium propionate was fed to the culture, and the fermentation was continued for an additional 81 hr. The isolation method of herbimycin from the formation. the fermentation broth has been described in the early report.